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SELF-SIMILAR SOLUTIONS OF UNSTEADY

BOUNDARY LAYERS

UDC 532.516/532.526.2O. A. Frolovskaya

Self-similar solutions are considered for the unsteady dynamic-diffusion boundary layer that forms
near a vertical wall at high Schmidt numbers and for the dynamic boundary layer adjacent to the
dynamic-diffusion layer at the inner edge. It is shown that a countercurrent flow zone forms in the
flow region of the dynamic boundary layer.

Introduction. Free convection in a viscous fluid near a vertical wall and transfer of an impurity are
described employing the classical Oberbeck–Boussinesq model and the model of microconvection. It is known that
using the Oberbeck–Boussinesq model at high Reynolds numbers, one can distinguish a boundary layer and obtain
integral flow characteristics (Nusselt numbers) from the solutions of the problem. In the case of microconvection, the
Reynolds numbers are usually low. Kuznetsov and Frolovskaya [1] proposed a method for distinguishing a dynamic-
diffusion boundary layer in the case of microconvection, where the Oberbeck–Boussinesq model is inapplicable. In
both models, a special dynamic-diffusion boundary layer is distinguished at high Schmidt (Prandtl) numbers with
no restrictions imposed on the Reynolds number. In these boundary layers, the viscous and buoyancy forces were
substantial and the inertial forces were negligible. Outside the dynamic-diffusion boundary layer, the structure of
the velocity field depends on Reynolds number. If the Reynolds number is high, in the flow region there is one more
purely dynamic layer of greater asymptotic thickness, whose inner edge is adjacent to the dynamic-diffusion layer
and whose outer edge neighbors the state of rest.

Kuznetsov and Frolovskaya [1] formulated the equations of steady-state dynamic-diffusion boundary layer,
found self-similar solutions of these equations, and considered their initial asymptotic forms. Results of studies of
free convective flows are given in greater detail in [2, 3].

Unsteady Boundary Layers. We consider the problem of determining the u and v components of the
velocity v, the concentration c, and the deviation from the hydrostatic pressure p in a region y > 0 bounded by
an infinite vertical wall {y = 0}. The gravity force is directed along the Ox axis. In the (x, y) coordinates, the
acceleration of gravity is written as g = (−g, 0). We assume that the density of the melt ρ depends linearly on the
concentration: ρ = ρ0[1 + β(c − c∞)], where ρ0 and c∞ are the average density and concentration of the solution,
respectively, and β = (1/ρ0)(dρ/dc) = const [for definiteness, we set β > 0)].

At high Schmidt numbers Sc = ν/D near the vertical wall, using the same assumptions as in [1], we can
distinguish an unsteady dynamic-diffusion layer. For the Boussinesq model, the boundary-layer equations are
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The boundary conditions for the velocity are given by

u|y=0 = v|y=0 = 0, u −→
y→∞

u∞(t, x). (2)
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For the concentration, we specify the first-order boundary conditions

c|t=0 = c∞, c|y=0 = f(t, x), c −→
y→∞

c∞ (3)

or the second-order boundary conditions

c|t=0 = c∞,
∂c

∂y

∣∣∣
y=0

= h(t, x), c −→
y→∞

c∞, (4)

where c∞ = const, f(t, x) and h(t, x) are specified functions, and u∞(t, x) is determined in the course of solution
of the problem.

The problem (1)–(3) [or (1), (2), and (4)] describes the motion in a thin dynamic-diffusion layer with thickness
of order (ScRe2)−1/4; outside the layer c ≈ c∞. In this layer, the buoyancy and viscous forces are of the same order
of magnitude, and, the inertial forces and the longitudinal pressure gradient are negligible in comparison with them.
Unlike in the case of a classical boundary layer [2], the external representation for the velocity is determined during
solution and not from the condition of joining with the external solution:

u = v = 0, p = 0, c = c∞. (5)

The velocity components are determined independently of the pressure, which is obtained by integration of
the second of Eqs. (1) over y from y to ∞ subject to the continuity equation

p(t, x, y) = p∞(t, x) + ρ0ν
(∂u∞
∂x
− ∂u

∂x

)
, (6)

where p∞(t, x) is the pressure at the outer edge of the boundary layer.
For the dynamic-diffusion boundary layer in the case of microconvection, it is required to determine the

concentration c, the modified velocity w = v + βD∇c, and the modified pressure q = p/ρ∗ − gx + β(ν −D)D∆c
with ρ = ρ∗(1− β(c− c∞))−1 that satisfy the initial boundary-value problem [1]
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Here w1 and w2 are the velocity components w, r(t, x) is a specified function, and w∞(t, x) is determined during
the solution of the problem. Here for the concentration, we can also specify conditions of the first kind.

Since generally, u∞ 6= 0 (w∞ 6= 0), the solution of the problem (1)–(3) [or (7)] cannot be joined with the
external solution (5). To eliminate this discrepancy for Sc/Re2 → 0, as in [1], we can distinguish one more asymptotic
form of the problem that describes motion in a region with asymptotic thickness greater than the boundary-layer
thickness considered above. In this case, Prandtl’s hypothesis on the equality of the orders of magnitude of viscous
and inertial forces is valid. The motion in this layer of thickness (Sc/Re2)1/4 is described by the equations
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At the initial time,

u|t=0 = 0. (9)

From the joining conditions, we obtain the following boundary conditions for the longitudinal velocity component u:

u|y=0 = u∞(t, x), u −→
y→∞

0. (10)
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Fig. 1

The boundary condition for the transverse velocity component v is given by

v|y=0 = 0. (11)

The dynamic-layer problem differs from the classical problem in that the longitudinal velocity is specified
at the inner rather than at the outer edge. In this problem, the pressure can be considered vanishing because, as
follows from the second of Eqs. (8), the pressure p is the same as the pressure at y → ∞, where p ≡ 0 (state of
rest; the pressure is equal to hydrostatic pressure). Therefore, in this case, p∞ ≡ 0 in formula (6).

Self-Similar Solutions. If conditions of the first kind are specified, we can seek self-similar solutions of
the problem (1)–(3) for f(t, x) = c∞ − νxt−2/(gβD). We will seek a solution of the problem considered in the
form u = ∂ψ/∂y, v = −∂ψ/∂x, and c− c∞ = (c∞ − f(t, x))(C(ξ)− 1), where the stream function is written as

ψ =
√
Dxt−1/2Ψ(ξ), ξ = yt−1/2/

√
D.

Then, Eqs. (1) become

Ψ′′′ = C − 1, C ′′ = (Ψ′ − 2)(C − 1)− (Ψ + ξ/2)C ′. (12)

From conditions (2) and (3), it follows that

Ψ(0) = Ψ′(0) = 0, C(0) = 0, lim
ξ→∞

Ψ′(ξ) = U∞ = const <∞, lim
ξ→∞

C(ξ) = 1. (13)

Here the initial conditions are not specified. A typical concentration profile is shown in Fig. 1.
For external representation of the velocity, we have

u∞(x) = U∞xt
−1 ≈ 0.975xt−1.

To characterize the mass transfer between the growing film and the solution, we introduce the overall and
local Nusselt numbers:

Nu =

l∫
0

1
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∣∣∣
y=0
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x
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∂c

∂y

∣∣∣
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,

where cω is the concentration on the wall {y = 0}. For the solutions considered, the formulas for the Nusselt
numbers become

Nu =
lt−1/2

√
D
|C ′(0)| ≈ 0.434

lt−1/2

√
D

, Nux =
xt−1/2

√
D
|C ′(0)| ≈ 0.434

xt−1/2

√
D

.

We determine the thickness of the dynamic-diffusion layer. In classical theory, the boundary-layer thickness
is evaluated using the so-called displacement thickness [4]. In our case, a characteristic feature of the boundary
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Fig. 2

layer is that the concentration c inside the layer differs from the average value, and outside the layer, c ≈ c∞. An
analog of the displacement thickness δ∗c is defined by the equality

δ∗c (c∞ − cω) =

∞∫
0

[c∞ − c(t, x, y)] dy.

Calculations for self-similar solutions yield

δ∗c =
√
Dt

∞∫
0

[1− C(ξ)] dξ ≈ 1.276
√
Dt.

In the case of conditions of the second kind specified for the concentration on the wall, a self-similar solution
of the problem (1), (2), (4) can be derived if

h(t, x) = qνxt−5/2/(gβD
√
D) (q = const > 0).

In this case, we seek a solution of the same form as that for the problem of the first kind. Equations (12) and
boundary conditions (13) remain unchanged except for the wall concentration condition: in (13), the condition
C(0) = 0 is replaced by C ′(0) = q. Depending on the heat flux (for 0 < q < 1), the wall concentration varies as

c∞ − c|y=0 = νxt−2(1− C(0))/(gβD),

where 1− C(0) = 0.139q3 − 0.485q2 + 1.896q + 2.132.
The problem (7) does not admit a self-similar solution.
We seek a solution of the problem (8)–(11) in the form u = ∂ψ/∂y, v = −∂ψ/∂x, where the stream function

ψ is written as

ψ =
√
νxt−1/2Ψ(η), η = yt−1/2/

√
ν.

Then, to determine Ψ, we have the problem

Ψ′′′ = (Ψ′ − 1)Ψ′ − (Ψ + η/2)Ψ′′, Ψ(0) = 0, Ψ′(0) = U∞, lim
η→∞

Ψ′(η) = 0. (14)

Numerical solution of the problem (14) shows that a countercurrent flow zone forms in the flow region. A curve
of Ψ′(η) is presented in Fig. 2. In this case (unlike in the classical case), we can calculate the volume flow Q in the
dynamic boundary layer:

Q =

∞∫
0

u(t, x, y) dy.
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The displacement thickness of the dynamic layer is obtained from the formula

δ∗vu∞(t, x) =

∞∫
0

u(t, x, y) dy.

Calculations yield Q =
√
νxt−1/2Ψ∞ ≈ −0.256

√
νxt−1/2. The thickness of the countercurrent flow region

δ = ((Ψ(η∗)− |Ψ∞|)/U∞)
√
νt ≈ 0.201

√
νt

is 76.66% of the dynamic-layer thickness δ∗v . Here Ψ∞ is the value of Ψ(η) for η → ∞, and η∗ is a point at which
Ψ′ = 0.

Conclusions. The problem of mass transfer and free convection near a vertical wall at high Schmidt numbers
was considered. For the unsteady flow regime, self-similar solutions are derived. Formulas for mass transfer are
obtained.

If the Reynolds number is high, in the flow region there is also a purely dynamic boundary layer of greater
asymptotic thickness, whose inner edge is adjacent to the dynamic-diffusion layer. A countercurrent flow zone
occurs in the flow region.
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